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South Oxford on January 5t", 2003

j Photo courtesy of Dave Mitchell
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Was this flood just another weather event, or
was it something to do with climate change?

= The difference between weather and climate and its
importance for attribution

= What we can say about weather: attributing cause
and effect in a chaotic system.

= Who/what was to blame for the 2000 UK floods?
= Implications for climate modelling.
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Autumn 2000 events “were extreme, but cannot
in themselves be attributed to climate change.”
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The problem in Autumn 2000: a consistently
displaced Atlantic jet-stream

The Atlantic Jet Stream (500hPa wind speed)
Autumn climatology (colours) & Autumn 2000 (contours)
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But the jet-stream varies with the weather: how
can we pin down the role of climate change?

= Lorenz’ definition of weather and climate: “climate is
what you expect, weather is what you get.”

= And in the 21st century: “climate is what you affect,
weather is what gets you.”

= We can demonstrate links between greenhouse
gases and climate (the shape of the weather
attractor) but most impacts arise from the changing
probabilities of natural weather events.

= Climate may be perfectly predictable, even though
weather is not.

= Focus on changes in risk.
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Model-simulated changes in extreme rainfall in
southern England

30-day extreme precipitation from UK RCM, Lewes
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Accounting for uncertainty in global mean
response 1860-2000

30-day extreme precipitation from UK RCM, Lewes
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How anthropogenic climate change may have
contributed to the risk of the October 2000
floods (but only global response uncertainty)

Possible changes in risk of pre-industrial 40-year event
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Allowing for more than global-mean response
uncertainty using a multi-model ensemble
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Change in risk of 20-year-return monthly rainfall
anomalies across the CMIP-2 ensemble

PDF of 20 year return values of monthly precipitation for OXFORD
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Change in risk of 10-year-return monthly rainfall
anomalies across the CMIP-2 ensemble

Estimated likelihood
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But available models don’t cover all possibilities

TCR from models and constrained by observations
GHG waqming over the 20th Century 5
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Allowing for model error in climate forecasting

= Long-term forecasts need to account for uncertainty
in climate system (atmosphere, ocean, biosphere
and cryosphere) response to external drivers.

= Initial-condition ensembles required to account for
chaotic variability.

= Impossible to predict response to varying model, so
large-scale Monte Carlo simulation the only option.

= Need to allow for uncertain forcing, increasing
ensemble size to hundreds of thousands.

= ldeal for distributed computing: Windows
implementation of HadCM3 (Stainforth et al, 2002).
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Must allow for forcing uncertainty: e.g. solar
forcing of 20t" century climate change
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www.climateprediction.net

Using idealised experiments to identify parameter
perturbations that change response to CO, without
changing control climate (like “singular vectors”).

Launch ensemble of coupled simulations of 1950-
2000 and compare with observations.

Run on to 2050 under a range of natural and
anthropogenic forcing scenarios.

Establish which forecast variables are consistently
related to well-sampled observables.

Weight ensemble for a specific forecast variable to
ensure consistency with relevant observables.
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The world’s most powerful climate modelling
facility
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Initial results: a broad range of sensitivities
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Including some negative...

5]l m=an 1,.5m tes

MHumber of

FLin - = = -0 = arnd low or —we coclimat

climateprediction.net



Climateprediction.net progress to date

Launched 12th September, 2003.

35,000 active participants (221 in the Russian
Federation); 408,000 model years completed (~2
Earth Simulators); 2,950 experiments already
returned.

Already demonstrating much richer behaviour than
could be explored with in-house ensembles.

Results available to the community via volunteer
“results nodes.”

Calling for diagnostic subprojects from interested
scientists: DTI funds for visits to Oxford?.
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Summary

= Most climate impacts are related to changing risks,
not just predictable trends.

= Quantifying changes in risk requires an
understanding of the non-linear nature of the climate
system and large Monte Carlo climate forecasts with
full-scale non-linear models.

= The most efficient way of achieving this is via
distributed computing, and also a perfect tool for
fostering trans-national collaboration.
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