Volunteer Computing in the Earth Sciences

Carl Christensen carlc@atm.ox.ac.uk
Chief Software Architect, Quake-Catcher Network
School of Earth Sciences, Stanford University

Senior Consultant, climateprediction.net
Department of Physics, Oxford University
What is Volunteer Computing?

- A specialized form of “distributed computing” which is really an “old idea” in computer science -- using remote computers to perform a same or similar tasks
- Resources volunteered by participants from the public & some corporate users
- Was around before ’99 but really took off then with SETI@home (5 million participants)
- Most projects today use the BOINC platform
What is BOINC!

- BOINC = (Cal-)Berkeley Open Infrastructure for Network Computing – offshoot of David Anderson’s work on SETI@home

- Large Open Source project but the bulk of the work is done by a few core staff at Berkeley. Projects such as CPDN contributes (graphics libs, networking/libcurl layer, testing, trickles)

- SETI@Home was the pioneer and “killer” VC app with user & CPU-year numbers that are the envy of every other DC app, 5 million total users, 500K at once

- BOINC is based on the experiences of the SETI@Home team in handling millions of users, downloads and uploads, investment of >US$2million
What is BOINC! (cont’d)

- So it makes sense to use BOINC which has a “tried and tested” framework instead of keep playing “catch-up” and “reinventing the wheel”

- BOINC allows us to focus on what we do best (or should be doing best): Climate science, climate modelling, visualisation packages, cross-platform porting of models, grid applications to “clamp on” the BOINC server-side

- Reality: Everybody wants “old SETI #'s” of millions of users – but tens of thousands more likely (but “nothing to sneeze at” -- it's still “Top Supercomputer” levels of processing power/TeraFLOPS!)

- Visit http://boinc.berkeley.edu
Volunteer Computing Stats

- SETI@home peak cap with a million+ concurrent users about 1 PF = 1000 TF (years ago)
- All BOINC projects currently about 2.5PF, broke petaflop barrier 01/08
- folding@home (non-BOINC) avgs 4-5PF thanks to PS3 and GPU work
- For comparison top supercomputer (June '09 – top500.org) DOE/LLNL Roadrunner broke petaflop barrier 5/08= 1.1PF max, $120 million, 2.5MW power req
- climateprediction.net (CPDN) running at about 80 TF conservative estimate (40K participating 2GF machines) – about 46th on top 500 supercomputer list
- Offers high CPU power at low cost (need a few developers/sysadmins to run the “supercomputer”)
- About 50 active BOINC projects, five have over 200K user, most much smaller
Volunteer Computing Challenges

- No control over quality or amount of resources
- Great for brute-force or ‘embarrassingly parallel’ – but can’t access entire CPUs & memory parallel a la supercomputer (i.e. not appropriate for all problems)
- Can be risky as far as numbers needed (i.e. “if you build it, they may not come!”) – may need to look into PR/media; address user attrition issues etc
- Interaction with participants can scare off more socially awkward academics and staff (successful projects have “hams” :-) – the “social aspects” take time & resources
Volunteer Computing Benefits

- Enormous potential for “free” resources from computing enthusiasts and corporate partners (at the “top supercomputer” levels and above, esp with GPU applications e.g. NVidia CUDA)

- Great for public outreach, education, publicity (QCN & CPDN in schools, BBC programmes etc)

- Relatively low cost as compared with paying for supercomputer resources (3-5 computing staff); fraction of a percent compared to supercomputer time

- Can be applied to a wide range of platforms (gaming consoles, graphics cards, all CPU O/S’, 32 & 64-bit) and problems
Case Study 1 – climateprediction.net

- ~10 years ago (October ’99) – Myles Allen article in Nature (“Do It Yourself Climate Prediction”) pondering the feasibility of large ensemble climate modelling & the SETI@home paradigm (what is now called “volunteer computing”)

- 6 years ago (12th September ‘03) – CPDN “Classic” launched at the Science Museum in London

- ~5 years ago (August ‘04) – CPDN merged with the BOINC project and launched our first app...
Challenges

- Climate models (ESM's, AOGCM's etc) are very large, complex systems developed by physicists sometimes over decades (proprietary in case of UKMO)

- ~1 million lines of Fortran code (HadCM3 - 550 files, 40MB text source code)

- Little documentation (the science is often well documented but not the software and design of the system per se)
Challenges (cont’d)

- Also “utility” code written by various scientists & students over the years (outside of model code, 220 files, 12MB source, 250K lines); often workable but hard to implement on a cross-platform PC project

- Meant to be run on supercomputers, primarily 64-bit – not designed (or indeed envisioned) to be run on anything other than a supercomputer or at the very least, a Linux cluster
climateprediction.net

Overview

- Proprietary, licenced by UK MetOffice, distribute executable/binary form only
- Resolution originally used: 2.75x3.75 degrees (73 lat x 96 long), now N144 (HadAM3) also (about 1 degree square)
- Typically run on a supercomputer (i.e. Cray T3E) or 8-node Linux cluster (minimum)
- Ported to a single-processor, 32-bit Linux box, Original: Windows only, now also Mac OS X, Linux; also doing 64-bit (HadGAM) now (25% of all active users, about 13K machines, are 64-bit)
- Intel Fortran Win & Linux, IBM XLF for Mac, now all Intel compilers (Mac, Linux, Win), also looking into GNU Fortran (new versions can compile the UM)
- As of today about 70 million model-years completed (since 9/2003)
climateprediction.net

BBC Climate Change Experiment

- 160 year coupled-model (HadCM3) run
- Promoted as part of the BBC “Climate Chaos” season of programmes & documentaries in ’06
- “Meltdown” documentary featured CPDN and launched the experiment in February of ‘06
- Shown on BBC4, had two million viewers, so was also shown on BBC 1 (promos during “Eastenders”!)
- Results show featuring David Attenborough broadcast in January of ’07
- Nominated for a BAFTA in “computer interactive” category (lost to Terry Pratchett’s Hogfather)
- http://www.bbc.co.uk/sn/climateexperiment/
climateprediction.net Users Worldwide

>300,000 users total
This globe shows your climate model running
Model date and time: 26/01/1921 14:00

Thanks for taking part! Modelling the first few years is extremely useful for us, so do keep going.
bbc.co.uk/climatechange

This globe shows your climate model running
Model date and time: 27/01/1921 04:00

To find out more about how you are helping climate research, visit the project website:
bbc.co.uk/climatechange

Created by climateprediction.net
climateprediction.net
for Educational Outreach

Students at Gosford Hill School, Oxon, viewing their CPDN model

- CPDN has public education via the website, media, and schools as an important facet of the project
- Website has much information on climate change and related topics to the CPDN program.
- Open University (UK) offered a short course (S199) utilizing the climateprediction.net experiment (MS Windows client)
- Students hosted a debate on climate change issues, compared and contrasted their results, etc.
A good example of a high-CPU requirement volunteer computing project

Ongoing: new experiments with MetOffice Hadley Centre models (slab model, coupled model, atmos only, regional models, newer versions i.e. HadGam/HadGem), 64-bit

Interested in collaboration with other modelling groups to get other models on CPDN (ECHAM5?, CCSM?)

Thanks to Myles Allen, Tolu Aina, Milo Thurston, Hiro & Kuniko Yamazaki, Sue Rosier & David Frame
Case Study 2- The Quake-Catcher Network

Prof. Jesse Lawrence (Stanford); Prof. Elizabeth Cochran (UC-Riverside)

- Based at Stanford with collaborators in UC-Riverside and international collaboration starting with Chile
- “Opposite” the usual volunteer computing projects with high computing requirements
- Sensors report seismic events (“triggers”) over the Internet to our servers via internal (laptop) or external (USB) sensors
Quake-Catcher Network
http://qcn.stanford.edu

- The Goal: To network computers with internal or USB-connected accelerometers for rapid earthquake detection.

- The Method: We use volunteer computing to monitor sensors internal or connected to computers when they are not otherwise being used.

- Potential for low-cost early warning systems; also great for educational initiatives
Seismology Basics: Waves

Seismic wave speeds:
P-wave: 5-7 km/s
S-wave: 3-4 km/s

S waves are slower –
But cause the most damage

SCEC, 2008
Seismology Basics: Waves (cont’d)

P-wave: S, Love, and Rayleigh Waves:
First Arrival More Damaging Arrivals
QCN: No-Cost Network

- Laptops With Sensors:
- HP, Apple, ThinkPad, Acer
- Very noisy data, not coupled to ground
- Sensors move location – track online
- Drawback: info on sensor detection and usage tough to get from manufacturers: only Apple Mac & ThinkPad supported by QCN
QCN: Low-Cost Network

- Desktops with connected USB sensors
- Cost: $35-$150 per sensor
- In noisy environments (homes & businesses)
- Over time hardware is getting cheaper, sensitivity/features are increasing
- 5000 purchased for distribution (Paypal purchases etc):
QCN Challenges

- Better Sensors: More sensitivity = better science

- Location: always changing – track IP addresses on our website, user inputs their location lat/lng

- Noise: typing, bouncing on laps, slamming doors, running kids, ...

- Timing: no GPS clock – synchronized to our servers via ntp (network time protocol)
Location

3-step Location System:

- Estimate location based on last known router (geoip). Often accurate within several kilometers.
- Participants provide their “favorite five locations” using a Google Maps Interface.
- Linked to IP or set a default location/address.

Battling Noise

- Use a statistical triggering algorithm that self-adjusts for the noise level
- We only monitor sensors when the laptop is otherwise unused
- Use 1,000s-100,000s sensors, not 10s-100s
- Rely on statistics of large numbers
Timing

- Network Time Protocol (NTP, 1985):
- Multi-tier system grounded to:
 - GPS Clocks
 - Atomic Clocks
 - Radio Clocks

Peer-to-peer method often provides better than 0.1 second accuracy, often +/- 20 msec.

Frassetto et al. (SRL, 2003)

Earthquake Detection

- Probable earthquake detection when the QCN receives many triggers from a region

- Otherwise just people bumping their laptops

- For big earthquakes:
 - only strong vibrations will be detected
 - Only large earthquakes will cause consistent triggers across a region of the network
Rapid Response

- Use a fast triggering algorithm
- Transfer statistics, not waveforms:
 - Small XML “packet” that the BOINC client sends up instantly – seismic data (SAC files) can be requested for upload later via BOINC
 - Significance level, time, IP, and XYZ amplitudes.
 - With enough sensors, statistical models can work well.
 - Store waveform data temporarily on the sensor-computer.
 - Sensor-to-server in 100ms (LA region) to 5 s (around the world) depending on local network traffic/bandwidth.
Network Status ~1000 (09/2009)
Reno Earthquakes Captured – 04/2008
Detection, Location & Magnitude

LA/Chino Hills Earthquake (07/2008)
Italy 04/2009 – 3 sensors
Desktop Network

- With a USB sensor, any computer can be turned into a strong motion seismometer with QCN software.
 - Schools can use the software to educate students about earthquake & seismology.
 - School sensors can be distributed evenly with population.
Educational Outreach

What we provide:

- Classroom Demo software.
- Seismology related in-class activities.
- Classroom USB Sensor.
- Classroom BOINC Software.
Building Response: From Ambient Seismic Field (just need one week’s worth of data)
Conclusion

- Volunteer computing is a proven resource for large earth science projects whether low or high-CPU requirements

- Exciting new avenues of approach – 64-bit, GPU, gaming consoles, multicore/multithreaded

- I would love to hear of any new ideas, suggestions, or proposals you may have, please email:

 carlc@atm.ox.ac.uk